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Abstract

Over the past five years, a rapidly developing experimental approach has
enabled high-resolution and high-content information retrieval from intact
multicellular animal (metazoan) systems. New chemical and physical forms
are created in the hydrogel-tissue chemistry process, and the retention and
retrieval of crucial phenotypic information regarding constituent cells and
molecules (and their joint interrelationships) are thereby enabled. For exam-
ple, rich data sets defining both single-cell-resolution gene expression and
single-cell-resolution activity during behavior can now be collected while
still preserving information on three-dimensional positioning and/or brain-
wide wiring of those very same neurons—even within vertebrate brains.
This new approach and its variants, as applied to neuroscience, are begin-
ning to illuminate the fundamental cellular and chemical representations
of sensation, cognition, and action. More generally, reimagining metazoans
as metareactants—or positionally defined three-dimensional graphs of con-
stituent chemicals made available for ongoing functionalization, transforma-
tion, and readout—is stimulating innovation across biology and medicine.
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INTRODUCTION

In the study of complex biological systems, a powerful experimental approach is that of analysis or
disassembly (removing components, such as a particular type of cell or complex of molecules, from
the native context for further study). For example, the current revolution in cancer treatment was
in part enabled by reductionist molecular and cellular-level analysis of isolated cancer cells and of
specific immune-system cells that play a role in suppressing tumor growth. The success of this ana-
lytical paradigm has, in part, extended to neuroscience as well; studies of isolated neurons and axons
have facilitated elucidation of the fundamental logic of single-neuron information processing.

However, for systems like the intact vertebrate brain (composed of 107–1011 interconnected
neurons and characterized by crucial emergent properties), studying constituent components in
isolation can provide little insight into many of the most significant mysteries. Alternatively,
converting the brain—or more broadly the entire metazoan (multicellular animal) organism—into
an assembly of reactants anchored onto a new and versatile three-dimensional (3D) coordinate
system has recently emerged as a complementary strategy (23, 24). Coupling individual subsets of
chemically defined biomolecules to functional groups, covalently anchoring or entangling these
in turn within a polymer lattice, and then working with this structure (effectively a 3D assembly
of spatially tagged molecular reactants) (23, 24) has already opened the door to a diverse array of
novel approaches and discoveries in biology.

The technique builds in part from (among several other foundations in science and engi-
neering) the chemistry of hydrogels, which are 3D polymeric networks of connected hydrophilic
components. Gels and polymers have a long history of use in biology, including for providing
physical support of tissues during sectioning and imaging, as well as for a number of important
clinical applications in regenerative medicine and tissue engineering. But in the basic science of
hydrogel-tissue chemistry (23, 24), specific classes of native biomolecules in tissue are immobilized
or covalently anchored (for example, through individualized interface molecules to gel monomer
molecules) and precisely timed polymerization causing tissue-gel hybrid formation is triggered
within all the cells across the tissue in an ordered and controlled process (Figure 1) to ultimately
create an optically and chemically accessible biomolecular matrix. Indeed, when the biomolecules
of interest are thereby transferred to the polymer lattice, a robust new composite hydrogel-tissue
material results (23, 24), which becomes the substrate for future chemical and optical interrogation
that can be probed and manipulated in new ways. This approach has been diversified (Figure 2) to
address needs and opportunities in organisms and tissues across biology (including in cancer diag-
nostics, bacterial and HIV infection of mammalian tissues, developmental biology, parkinsonism,
Alzheimer’s disease, multiple sclerosis, autism, drug abuse, and fear/anxiety disorders). Here, we
review the fundamentals of this approach, the rapidly expanding scope of discoveries that have
resulted, and emerging directions and opportunities for the future.
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DEVELOPMENT OF METHODS

Biomolecule functionalization and multistep linkage to a versatile tissue-hydrogel scaffold
(Figure 2) within the cells of vertebrates (mouse, fish, and human) (15, 16, 23) were described in
an initial version called CLARITY; this method was optimized for application to the vertebrate
nervous system (15, 16, 23). The hydrogel-tissue hybrid brains were transparent (i.e., clarified) and
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Figure 1 (Figure appears on preceding page)

Hydrogel-tissue chemistry (HTC) steps toward tissue functionalization. The example shown (initial HTC formulation) is termed
CLARITY (16). The main steps for transformation of the tissue, as shown for (a) the diagrammed cell prior to the HTC process,
include (b) hydrogel-monomer infusion followed by cross-linking to native macromolecules and then gelation (dashed black lines denote
newly formed C-C bonds to the hydrogel lattice, which in turn is shown as wavy green lines). Details of the chemistry are shown in
Figure 2. For all figures, the color code for tracking source of C and N atoms is as follows: blue N(H) = protein-derived amine moiety;
magenta C(H) = formaldehyde-derived carbon moiety; red N(H) = nucleic acid–derived amine moiety; and dark green = amide of
exogenous gel monomer (e.g., acrylamide). (c) The delipidation process is shown after the anchoring of proteins directly to the new
hydrogel lattice; nucleic acid anchoring is chiefly indirect via protein bridges, anchoring via EDC (1-ethyl-3-3-dimethyl-aminopropyl
carbodiimide) for linking the 5-phosphate group to surrounding amines (125) (Figure 2), or polymer entanglement. Stringent
delipidation with detergent can then proceed without the risk of extensive biomolecule loss or structural disruption. (d ) Optical
clearing, refractive index matching, and high-resolution volumetric imaging (through delipidized tissue) can now occur for reading out
molecules replotted onto the new tissue-hydrogel coordinate system shown in green (23).

thus permissive of intact whole-organ imaging at high resolution (16). It was noted that the result-
ing hydrogel-tissue hybrid “expanded” upon lipid removal in aqueous solution but “did not cause
net tissue deformation. . .[R]emaining secured in place were fine structural details” (16, p. 334)
since the expansion could be reversed with a solution change. Other diverse strategies for reducing
opacity of intact tissue had been explored for years (though with varying degrees of efficacy and
versatility) (Figure 3), but transparency was not the only experimental leverage achieved with
the hydrogel-tissue chemistry (HTC) approach; for example, the new hybrids were designed to
be macromolecule permeant—enabling multiple rounds of molecular interrogation of preserved
biomolecules (proteins and nucleic acids) that had been anchored into the new physical structure
(16, 23, 125).

Single-photon confocal microscopy was initially used to image many-millimeter-thick blocks
of the resulting clarified and fluorescently labeled human brain tissue, zebrafish central nervous
systems, and whole adult mouse brain hemispheres (16). Diverse lines of work eventually emerged
from this publication (23); as was noted therein, “infused elements need not be exclusively hydrogel
monomers or acrylamide-based, and the properties of infused elements may be adjusted for varying
degrees of clarity, rigidity, macromolecule-permeability or other functionality” (16, pp. 336–
37). Also in 2013, a broad diversity of additional compositions, including those with acrylates or
alginates, was described (25), and indeed variations and innovations on the theme rapidly emerged
(Figure 4) (reviewed in 23, 53).

Also introduced was an electrophoretic tissue clearing (ETC) technique to accelerate lipid
removal (16); lipid removal promotes tissue transparency and macromolecular interrogation, and
this process can be carried out nondestructively after hydrogel-tissue hybrid formation (Figure 1).
ETC employs electric field–forced clearance of lipid-containing ionic-detergent sodium dodecyl
sulfate (SDS) micelles (Figure 1). Although helpful, ETC is not absolutely necessary to remove
lipids, and the following year an ETC-independent approach was reported—passive CLARITY.
This variant was initially described by Zhang et al. (147) and was found to be effective for adult
central nervous systems and spinal cords. Passive CLARITY was soon thereafter reported to apply
also to brain slices (104), and when combined with CLARITY-optimized light-sheet microscopy
(COLM) this variant enabled imaging of entire adult mouse brains at subcellular resolution within
several hours (131). At the same time, another CLARITY variant (PACT) was described (142),
presenting modifications to the CLARITY reagents to passively achieve fast clearing of thick
samples. After overnight tissue fixation in 4% paraformaldehyde (PFA), tissues were embedded in
a 4% acrylamide hydrogel solution without the 4% PFA and 0.05% bisacrylamide of the original
hydrogel formulation to minimize cross-linking (133, 142). In addition, a relatively inexpensive
refractive index–matching solution, termed RIMS, was introduced (142).
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Figure 2 (Figure appears on preceding page)

Example functionalization chemistry. Most current hydrogel-tissue chemistry (HTC) protocols include a preliminary biomolecule
fixation step, such as aldehyde-based cross-linking of (a) proteins, peptides, and small-molecule amines and/or (b) nucleic acids,
including targeted coupling of nucleic acids to the matrix via EDC (16, 125). (c) Biological macromolecule retention is next enhanced
via creation and conjugation to (for example) an acrylamide-bisacrylamide gel matrix. Note that direct aromatic amine coupling of the
RNA with aldehyde shown is expected to be a minor reaction compared to coupling reactions with protein aminomethylol moieties and
compared to noncovalent caging of extensively crosslinked and protein-bound RNA in the hydrogel matrix. Depicted here are certain
reactions as designed, but as Feldman pointed out 45 years ago, “The use of nucleic acid reactions with formaldehyde has outstripped
our knowledge of their mode of action” (34, p. 2), and the same could be said of many modern tissue-based chemistries. A fundamental
theme, however, is a gel monomer ( green box, in this case showing three well-defined demonstrated R-moiety variants with the R1
acrylamide common to many current formulations) and the resulting tissue-hydrogel scaffold (here peach box, showing a representative
HTC structure) into which the biological system is transformed; this provides the new coordinate system for replotting and jointly
working with functionalized biomolecules stably in 3D space. Abbreviations: EDC, 1-ethyl-3-3-dimethyl-aminopropyl carbodiimide;
INIT, free radical initiator.

The data of both Yang et al. (142) and Tomer et al. (131) in 2014 showed a moderate degree
of tissue expansion associated with the HTC process, as had been described by Chung et al. (16)
and indeed also as had been seen with earlier tissue clearing approaches (Figure 5). Although this
effect had not been amplified to explore potential advantages, over the next two years, several HTC
papers {11 [expansion microscopy (ExM) in 2015], 131 [expansion passive CLARITY technique
(ePACT) in 2015], and 62 [magnified analysis of the proteome (MAP) in 2016]} soon enabled
much-enhanced swelling of HTC hybrids to improve resolution of densely packed features. In a
method unique for preserving endogenous fluorescence, ePACT (133) uses collagenase to enhance
the magnitude of the size change. Two of the other versions, ExM (11, 30) and MAP (64), also
embed tissue in a similar hydrogel network (reviewed in 53). In these formulations, which prescribe
inclusion of acrylates (R2 in Figure 2) alongside acrylamide to enhance swelling (Figures 2 and
4), proteolysis can be carried out to facilitate this process but is not required. MAP additionally
allows reversible expansion of the tissue-hydrogel hybrid (Figure 5) and super-resolution imaging
of subcellular structures using high concentrations of acrylamide (30% acrylamide with 10%
acrylate) to promote protein attachment to the hydrogel and prevent intra- and inter-protein
cross-linking (64).

A large number of subsequent HTC studies put forward additional enhancements, including
modifications of the ETC process and device (5, 59, 71, 72, 117, 121), of the hydrogel monomer
and cross-linker levels (5, 32, 63, 131, 133, 142) and of other parameters while maintaining the basic
hydrogel-tissue chemistry (18, 20, 22, 32 , 63, 80, 84, 108, 122, 140, 142, 143, 145, 149). In addition
to the acrylamide and/or acrylate-based PFA-coupled hydrogels noted above (PACT/ePACT,
ExM, MAP), other gelation mechanisms have also been described. The SWITCH approach uses
pH changes to synchronize formation of a glutaraldehyde-crosslinked matrix within tissue before
CLARITY-type lipid removal via SDS, resulting in a heat- and chemical-resistant tissue-hydrogel
hybrid that facilitates multiple rounds of labeling, elution, and relabeling (94, 106). Also described
in the study that introduced PACT was a strategy termed PARS (perfusion-assisted agent release
in situ) for whole-body clearing and labeling using perfusion through the vasculature to deliver
hydrogel, clearing, labeling, and imaging reagents (133, 142). PACT and other passive CLARITY-
based HTC methods were further adapted to tissues otherwise difficult or impossible to image
intact, from the rigid and opaque bone [PACT-deCAL (133, 140) and Bone CLARITY (44)] to
the soft and friable clinical samples and embryos (27, 51, 148).

In addition to small-molecule dyes, cellular stains, and protein labels (e.g., lectin) that can
directly target proteins, DNA, and other biomolecules, tissues cleared using HTC can be stained
using fluorescently tagged whole antibodies as well as smaller antibody formulations such as FAB
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Figure 3
Non-hydrogel approaches for optical access to tissue. Beyond the hydrogel-tissue chemistry (HTC) concept, distinct transparency
methods have been reported on the basis of various combinations of organic solvent–based dehydration and delipidation, or of
hyperhydration-based optical clearing after less stringent permeabilization and delipidation steps. Unlike HTC constructs, these are all
generally limited to optical imaging as the next and final step, rather than specifically enabling additional chemistry. The color code for
tracking source of C and N atoms is as follows: blue N(H) = protein-derived amine moiety, magenta C(H) = formaldehyde-derived
carbon moiety, red N(H) = nucleic acid–derived amine moiety. (a) Organic solvent–based clearing (dehydration, lipid removal, and
refractive index matching) methods include BABB/ultramicroscopy (31), 3DISCO (33), iDISCO (107), FluoClearBABB (113),
uDISCO (99), RetroDISCO (150), CRISTAL (57), and ethanol/ethyl cinnamate (61). (b) Aqueous-based clearing (refractive index
matching, with optional hyperhydration and lipid removal) methods include: Scale and ScaleS (45, 46), SeeDB (56), CUBIC (65, 77,
123, 124, 126), 2,2′-thiodiethanol (TDE) (4, 18), FRUIT (49), ClearSee (66), acrylamide-free CLARITY (68, 81), sorbitol/sucrose/
fructose (144), and single-cell optical clearing (21). Abbreviations: 3DISCO, 3-dimensional imaging of solvent-cleared organs; BABB,
benzylalcohol/benzyl benzoate; CRISTAL, curing resin-infiltrated sample for transparent analysis with light; CUBIC, clear,
unobstructed brain imaging cocktails and computational analysis; DMSO, dimethylsulfoxide; iDISCO, immunolabeling-enabled
3-DISCO; SeeDB, See Deep Brain; uDISCO, ultimate DISCO.

(fragment antigen-binding antibody) fragments (15, 16, 131, 133). Nanobodies were effective in
staining PACT-cleared tissues (142); at 10% the size of full antibodies and stable over a vari-
ety of pH and temperature conditions, nanobodies are particularly appealing for labeling cleared
thick tissues (133). The ETC process was accelerated using an approach called stochastic elec-
trotransport (59), and an electrophoretically driven approach transported antibodies across a few
millimeters of cleared tissue in less than an hour, approximately 800 times faster than via passive
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Figure 4 (Figure appears on preceding page)

Hydrogel-tissue hybrid backbone concepts. Hydrogel-tissue chemistry (HTC) structures involve integration of native biomolecules as
part of the hydrogel framework as shown in Figures 1 and 2; for clarity on HTC subtypes, shown here are only the designs for
exogenous chemical-derived backbones, while a fuller perspective with details on integration of native biomolecules appears as
Supplemental Figure 1. HTC backbone formulations (a selected subset shown) allow customizable biological macromolecule
anchoring and functionalization within a variety of frameworks. Molecular design of the initial backbone (top left; 16) and some of the
subsequent early variants (top middle, top right, bottom right) are shown; color-coded backbone constituents are shown at lower left, and
symbols for design properties of different methods are shown at bottom middle. The chemical backbone of the hydrogel built within
the cells (top left) interacts with tissue elements through two principal routes: (i) covalent integration of amine-containing and otherwise
functionalized proteins, nucleic acids, and small biomolecules; and (ii) noncovalent trapping of bulky moieties, such as extensively
cross-linked protein networks within the hydrogel matrix. As with the initial HTC design, subsequent HTC variants are similarly
capable of preserving molecular information during tissue processing through physically securing tissue macromolecules within the
hydrogel or through recording their cellular location using custom labels that can withstand processing steps. Among the notable
formulations, ExM (11), ePACT (133), and MAP (64) incorporate acrylate alongside acrylamide (as R2 of the R1, R2, and R3 moieties
shown in Figure 2) into the basic HTC formulation to further enhance expansion. Bisacrylamide was not described in the initial PACT
paper but can be included in the PACT formulation. SWITCH (94) gelation forgoes paraformaldehyde/acrylamide in favor of
glutaraldehyde, a dialdehyde fixative that confers more robust protein cross-linking and some fixation of amine-containing
phospholipids. EDC-CLARITY (125) provides a dedicated covalent-linkage pathway for more robust mRNA cross-linking to the
tissue-hydrogel matrix. Other properties of interest seen with different variants include increased rigidity (seen with SWITCH) or
conversely increased size-flexibility [as seen with PACT (142), ExM (11), ePACT (133), and with other methods not shown, including
proExM (127), ExFISH (12), iExM (10), and MAP (64); Supplemental Figure 1]. Tissue components are critical constituents of the
HTC backbone, as shown in more detail in Supplemental Figure 1; for example, in the top-row HTC methods, native proteins (with
multiple reactive amines) can support cross-linking as well as bisacrylamide (R3 moiety of Figure 2) does. Moreover, native amines play
a crucial role in catalyzing glutaraldehyde polymerization in the bottom right SWITCH method, in which low pH is used to initially
slow down polymerization as glutaraldehyde is exposed to tissue amines until gel formation is desired. Abbreviations: EDC,
1-ethyl-3-3-dimethyl-aminopropyl carbodiimide; ePACT, expansion passive CLARITY technique; ExFISH, expansion fluorescent in
situ hybridization; ExM, expansion microscopy; iExM, iterative expansion microscopy; MAP, magnified analysis of the proteome;
PACT, passive CLARITY technique; proExM, protein-retention expansion microscopy; SWITCH, system-wide control of interaction
time and kinetics of chemicals.

diffusion (75). PRESTO (pressure-related efficient and stable transfer of macromolecules into or-
gans) conferred increased antibody penetration depth and speed, particularly in cleared peripheral
organs, by application of either centrifugal force or convection flow using a syringe pump during
sample incubation in an antibody solution (71).

To broaden the types of macromolecular information obtained, recent studies have developed
methods for visualizing lipids and RNA in HTC samples. Following earlier work that demon-
strated the detection of endogenous mRNA in CLARITY specimens via standard in situ hy-
bridization protocols (16), Yang et al. (142) showed that PACT hydrogels supported the use of
single-molecule fluorescence in situ hybridization (smFISH) to detect individual mRNA tran-
scripts at depth. In optimizing retention of RNA for labeling in cleared hydrogel-tissue hybrids,
a carbodiimide compound [1-ethyl-3-3-dimethyl-aminopropyl carbodiimide (EDC)] was discov-
ered to be useful for specifically linking RNA nucleotides directly to the tissue hydrogel (125)
(Figure 2), and application of the hairpin chain reaction (HCR) amplification system facilitated
multiplexed RNA labeling in these EDC-CLARITY samples that could be at least 3 mm thick. A
1% acrylamide hydrogel exhibited improved RNA labeling (for both total RNA and specifically
mRNA) when compared to CLARITY samples (with 4% acrylamide) (125). Multiplexed single-
molecule HCR was also demonstrated as an effective in situ hybridization technique in HTC brain
slices embedded and cleared with PACT or ExM (12, 27, 115). Other methods led to improved
visualization of fluorescent nanoparticles (polyethylene glycol–coated quantum dots) (116, 117),
creation of nonfluorescent (dark) reaction products (horseradish peroxidase colorimetric labeling)
(122), and development of lipophilic dyes that were altered to be aldehyde fixable to proteins to
mark membranes even after HTC lipid removal (52).
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HYDROGEL-TISSUE CHEMISTRY–BASED DISCOVERY IN
NEUROSCIENCE AND THROUGHOUT THE ORGANISM

HTC methods have proven powerful for neuroscience; only a few examples of resulting discoveries
are collected here to illustrate current capabilities and opportunities. First, a large number of stud-
ies have used the HTC approach to identify local and global wiring patterns of targeted neurons,
beginning with the demonstration that a specific class of spinal cord neuron (NECAB expressing)
exhibits midline crossing (147), and subsequently with the mapping of infection distribution for
viral vectors microinjected into the lateral amygdala (LA) to analyze the neural mechanism of
cocaine-cue memory engram formation in mice (50). Similarly, in a study analyzing the morphol-
ogy of raphe-spinal fibers in the spinal cord, passive CLARITY provided visualization of a unique
branching pattern of serotonergic fibers along the rostrocaudal axis as they extended toward the lat-
eral motor neuron column (77, 78). Using rabies virus–based circuit mapping, passive CLARITY
and COLM provided unbiased global mapping of all the neurons in the brain that project to
dopamine neurons in the substantia nigra pars compacta, which in turn project to dorsolateral
versus dorsomedial striatum (73). Likewise, rabies virus–based methods were used to trace monosy-
naptic inputs to projection-defined dopamine neurons via whole-brain CLARITY (in this case also
with ETC and light-sheet imaging) (90). Anterograde tracing followed by CLARITY (using both
ETC and passive clearing) provided visualization of synaptic targets of GABAergic projections
from the medial septum (136). And in a study analyzing top-down control of anxiety and fear, pas-
sive CLARITY was used to track and map a distinct novel projection from ventromedial prefrontal
cortex to basomedial amygdala (1). Integrating passive CLARITY with light-sheet microscopy and
behavior, researchers implemented multiple-animal whole-brain activity mapping protocols for
HTC alongside a strategy termed CAPTURE (143) for quantifying numbers and projections of
behaviorally activated neurons.

PACT was used to study the distribution and morphology of astroglia in thick tissue sec-
tions (92) and the 3D distribution of multiple genetically defined neuron types in mouse brains
(103). Passive CLARITY on sections of medial prefrontal cortex (mPFC) established the presence
of nonoverlapping corticotropin-releasing factor and corticotropin-releasing factor receptor-1
circuits relevant to acute stress (138) and was used to map brain-wide viral expression in mice
inoculated with western equine encephalitis virus in the foot pad (101). The distribution of mi-
croglia within the subventricular zone (a neurogenic region of the adult central nervous system)
was mapped using passive CLARITY (38), and in the periventricular zone of the cerebellum, pas-
sive CLARITY was employed to analyze the organization of astrocytes during development (43).
Passive CLARITY was used to show increased dendritic complexity in hippocampal pyramidal
neurons of transgenic mice that exhibit enhanced learning (114) and to observe the localization
of cells expressing neuromedin B, a bombesin-like neuropeptide that influences sighing behavior,
around the facial nucleus, including the retrotrapezoid nucleus (a control center for breathing)
(76). In transgenic mice using the nicotinic acetylcholine receptor α2 subunit (Chrna2) locus to
mark deep-layer V Martinotti cells, passive CLARITY was used to verify labeling, specificity, and
morphology of the targeted cells (47). For examining somatostatin-expressing interneurons in the
dentate gyrus, CLARITY allowed demonstration of the axonal projections of a specific subset to
the medial septum (146). Subcellular localization of a specific transcription factor, ESRRA, was
analyzed using CLARITY (1% acrylamide with ETC) in brain sections (200 μm) to help eluci-
date the protein’s role in cell signaling (111). Using viral vector tracing to label mPFC-projecting
neurons in the basolateral amygdala (BLA), CLARITY provided visualization of the target speci-
ficity of those neurons, which aided in investigation of their role in manipulating fear associations
(60). To analyze neuronal organization in the hypothalamus, whole-brain mapping of tyrosine
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hydroxylase (TH)-positive neurons and projections was performed with CLARITY followed by
immunostaining and COLM (109).

In addition to enabling these basic discoveries, HTC work has also stimulated technical and
engineering advances. Passive CLARITY of electrolytically lesioned slices was used to correct
electrode placement for fast-scan cyclic voltammetry (120) and to identify locations of implanted
optical fibers (89). Following penetrating brain injury, passive CLARITY permitted brain-wide
visualization of specific peptide accumulation in studies exploring targeted delivery of diagnostic
and therapeutic compounds (86). And more broadly, body-wide biodistribution studies looking at
chemicals or biologicals were found to benefit from HTC; for example, Treweek and coworkers
(134) and Deverman et al. (28) demonstrated that whole-body PARS (142) could facilitate the
generation of transduction maps of systemically delivered genes by adeno-associated viruses, which
in turn facilitated characterization and discovery of new viral variants for targeting the central
and peripheral nervous systems (8). HTC-based clearing has also technically enabled quadruple
immunofluorescent staining as well as multiple rounds of labeling to reveal a variety of richly
defined subcellular domains and molecule types in single human cerebellar sections (102).

Several studies have combined magnetic resonance imaging (MRI) with CLARITY. In probing
the contribution of myelination to measurables from diffusion tensor imaging, passive CLARITY
revealed that myelination correlates strongly with fractional anisotropy but only partially with
radial diffusivity (9). The differential contributions of lipids and proteins to MRI contrast were
analyzed using passive CLARITY to remove lipids and preserve proteins: Cleared tissues showed
minimal contrast, increased relaxation times, and diffusion rates similar to free water, and lipids
were thus demonstrated to be the dominant source of MRI contrast in brain tissue (74). In experi-
mental autoimmune encephalomyelitis (a mouse model of multiple sclerosis), a direct relationship
was defined between gray matter atrophy visualized using MRI and the number of axonal end
bulbs in spinal cord visualized using passive CLARITY (118). This type of ground-truth work on
clinical biomarkers is of immense and rapidly increasing value, particularly given the epidemiology
of neurodegenerative diseases.

Disease model work in general has progressed rapidly with HTC. In a mouse model for Parkin-
son’s disease, passive CLARITY revealed fragmented nigrostriatal axons (97). In addition to re-
lated studies in rat models (80, 119), direct human-disease HTC applications have also advanced
rapidly. The effectiveness of CLARITY on postmortem human brain tissue was demonstrated
using 500-μm thick tissue blocks from clinical autism samples that had been stored in formalin
for over six years, revealing 3D morphologies not readily accessible using traditional sectioning
(16). Similarly, passive CLARITY has been used to examine the 3D architecture of amyloid and
tau aggregates in 500-μm thick banked tissue from Alzheimer’s disease patients (3), and passive
CLARITY has been used on 3-mm thick blocks of fresh or formalin-fixed tissue from Parkinson’s
disease patients to reveal Lewy body inclusions nearly 1 mm deep in the tissue (80).

NONNEURAL TISSUES

Although originally conceived for studying the brain (23, 24), the HTC approach can be extended
to a wide variety of other organs and tissue types, including spinal cord, lung, heart, intestine,
spleen, kidney, muscle, testis, pancreas, liver, skin, and bone (32, 44, 71, 72, 100, 140, 142). Its
usefulness for imaging infection was demonstrated using PACT in mice infected with fluores-
cent Mycobacterium tuberculosis, which enabled visualization of 3D spatial distribution of bacteria
throughout intact lungs (20). A modified PACT, MiPACT (for microbial identification after
PACT) was designed to label bacterial rRNA (via HCR) for analysis of spatial organization and
metabolic activity of bacteria in amorphous sputum samples from cystic fibrosis patients (27). Also
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in lung, localization of nestin-expressing cells was observed throughout the vasculature (not the
airway system) of tissue cleared via PACT, which motivated and guided investigation of the role
of these cells in development of pulmonary hypertension (110). In a mouse model of lung adeno-
carcinoma, applying CLARITY to whole-lung tumors (clearing with two days of ETC) provided
a comprehensive demonstration of significant differences in the cellular density and morphol-
ogy of tumor cells with and without depletion of regulatory T cells (54). In pancreatic tissue, an
evaluation of p53 loss of heterozygosity in tumor progression was enabled by HTC (95).

In liver, 3D positioning within the portal system (relative to the canals of Hering) was demon-
strated using passive CLARITY for periportal hepatocytes, which undergo proliferation follow-
ing injury (37). After application of passive CLARITY to rat kidneys, superresolution-STED
microscopy revealed 3D positioning information at the nanometer scale (137). HTC on mouse
and human gut tissue was achieved using passive CLARITY and immunostaining to visualize
structures in the enteric nervous system, vasculature, smooth muscle layers, and epithelium, while
also demonstrating compatibility with classical pathological stains such as hematoxylin-eosin and
Heidenhain’s Azan (96). Early systemic viral spread of human immunodeficiency virus 1 (HIV-
1) in humanized mice was analyzed from gut-associated lymphoid tissues using PACT (58), and
HTC (with ETC) was found useful for studying even dense and fibrous mouse hind-limb skele-
tal muscle tissue (91). In virgin and lactating mouse mammary glands, epithelial and tumor cells
were made visible using PACT (82), whereas with passive CLARITY on intact mouse ovaries,
the architecture and growth of ovarian follicles and their relationship to vasculature was analyzed
throughout the mouse reproductive life (35, 83). Embryonic and neoplastic tissue analysis has
been similarly optimized (48, 88, 132), and fast clearing was achieved by HTC in liver tissue (69)
as well as in the growth plates of distal limbs (17).

In hatched chickens, adult Xenopus, and adult zebrafish, the comparative organization of HTC-
stabilized cerebrospinal fluid–contacting cells revealed similarities pointing to a common bony
vertebrate ancestor (141). Legs from chicken embryos were analyzed using passive CLARITY
to reveal embryonic development of hallux positioning in the avian grasping foot (6). Passive
CLARITY was also applied to the mouse nasal septum to visualize the morphology of horizontal
basal cells in the olfactory epithelium following lesion of the olfactory bulb (112). The effect of
subcutaneous injection of poly(methacrylic acid-co-methyl methacrylate) beads on vascularization
was observed using passive CLARITY in mouse skin tissue (79). A dual-illumination-side light-
sheet microscope optimized for imaging cardiac tissue over 1 cm3 in volume, combined with HTC,
enabled researchers to measure ventricular dimensions, track the lineage of cardiac cells, and view
the spatial distribution of cardiac-specific proteins within intact hearts (29). CLARITY also has
been employed in intact mouse hearts as well as human heart tissue up to several millimeters thick
(42, 62).

Host–pathogen interactions were studied using passive CLARITY and PACT to comprehen-
sively examine morphology of necrotic granulomas from adult zebrafish infected with Mycobac-
terium marinum (19, 20). PACT and CUBIC (123) were found well suited for imaging the intact
zebrafish testis at cellular resolution (39). Passive CLARITY was applied to transgenic Xenopus
tadpoles to locate and quantify thyroid hormone signaling disruption by contaminants introduced
during brain development (36). Applying passive CLARITY to the intact liver of lamprey un-
dergoing metamorphosis provided visualization of the process of biliary degeneration, a process
that occurs in human infants with biliary atresia via a mechanism that is still unknown (14), and
passive CLARITY/COLM imaging in the lamprey was used to visualize the spatial organization
of neuronal inputs and outputs in the optic tectum with the Neurobiotin tracer (55).

Addressing challenges beyond soft tissue, Bone CLARITY (44) was developed and applied
along with a CLARITY-optimized light-sheet microscope to quantify marrow cells from cleared
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adult intact mouse bones, revealing differences in fluorescent stem cell count and distribution
after bone-forming agent administration (44). HTC approaches have been applied to multicellu-
lar plants as well via plant-enzyme-assisted (PEA)-CLARITY, an adaptation to perform optical
clearing and antibody interrogation on plant tissues. Using cell wall–degrading enzymes to increase
permeability and starch-hydrolyzing enzymes to improve transparency following passive clearing,
PEA-CLARITY enabled visualization of fluorescent signals from expressed proteins as well as an-
tibody staining in whole, intact tobacco and Arabidopsis leaves (98). The PEA-CLARITY protocol
was later applied to study the 3D architecture of the Medicago truncatula root nodules (128).

OUTLOOK

The proven application domain of HTC in biology and medicine is rapidly expanding and has
already resulted in numerous basic science discoveries and opportunities for clinical medicine (e.g.,
24, 51, 143). However, the novelty of the preparation and its resulting data streams have created
challenges. Here, we consider the current rate-limiting steps as well as opportunities for the future.

Early on, one of the clearest applications of the HTC approach was enabling high-resolution
optical access to large intact tissues, organs, and organisms. Although this major goal was achieved,
collecting high-resolution volumetric image data from large samples created new issues. For ex-
ample, the transparency of the hydrogel-tissue hybrid allowed confocal or two-photon imaging
over large volumes, but these slow point-scanning techniques led to bottlenecks in image acquisi-
tion (e.g., the collection of high-resolution structural data sets for an adult mouse brain required
several days of imaging). Data collection on this timescale is associated with problems ranging
from photobleaching to simple microscope overoccupancy, but rapid development of advanced
light-sheet imaging, which offers orders-of-magnitude improvement in speed (29, 41, 44, 107,
115, 130, 131, 143), addressed this acquisition problem. Subsequent HTC-focused work included
stochastic electrotransport (59); super-resolution-STED microscopy (137); adaptive optics (105);
HTC sample handling chambers (44, 92, 93, 135); custom ETC and staining chambers (59, 71);
and microfluidic chip-based embedding, clearing, and labeling (13).

The initial expansion found associated with HTC methods (16, 131, 142) was counteracted
with size-normalization/contraction strategies during the refractive index-matching step to allow
high-resolution objectives with limited working distance to access more of the brain (16). This
strategy also had the effect of reducing the data set size, an important consideration for tractability.
However, these considerations have become progressively less important with the advent of new
hardware, including customized long-working-distance and high-resolution CLARITY objectives
(87, 131) as well as distributed computing strategies.

Many studies have employed automated analysis pipelines for manipulating large CLARITY
data sets; commercial 3D rendering software programs, such as Imaris or Arivis, can automate
manually intensive data processing steps such as cell counting. Automation becomes even more
valuable when analyzing thicker tissue sections or whole organs (44, 92, 143), but the utility
of automated analysis extends beyond the domain of cell body recognition and counting. To
quantify neural projection patterns, an automated method has been developed to compute 3D
structure tensors from CLARITY images, and input of the tensors into diffusion tractography
software yielded reconstruction of calculated streamlines mapped onto fibers from the CLARITY
images (143). With this approach, connectivity between a seed region and specific downstream
targets could be visualized and quantitatively evaluated by counting streamlines (143). In addition,
alignment of autofluorescence images from multiple sample organs can be used to create a common
reference space. When autofluorescence is combined with segmentation algorithms for automated
cell detection, a transformation of the acquired signal from each sample onto this reference space

368 Gradinaru et al.

A
nn

u.
 R

ev
. B

io
ph

ys
. 2

01
8.

47
:3

55
-3

76
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

St
an

fo
rd

 U
ni

ve
rs

ity
 -

 M
ai

n 
C

am
pu

s 
- 

R
ob

er
t C

ro
w

n 
L

aw
 L

ib
ra

ry
 o

n 
05

/2
5/

18
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



BB47CH17_Deisseroth ARI 25 April 2018 11:1

can be used to compare the regional distribution of labeled cells across brain samples and allow
registration to public atlases, such as the Allen Brain Institute’s Mouse Reference Atlas (90, 107,
143). Automatic annotation of CLARITY brain images (67) has been enabled by registering
CLARITY brain images to the Allen atlas using a method called Mask-LDDMM. TeraFly is a
free, open-source software tool designed specifically for 3D integrated visualization and annotation
of massive, terabyte-sized image data sets like those acquired using the COLM system (7), and a
manual segmentation tool (ManSegTool) for segmenting 3D neuronal data sets was demonstrated
to enable neuroscientists to extract neurons from cerebellum slices cleared and imaged using
passive CLARITY (85). For automatic annotation and standardization of brainwide data sets,
WholeBrain is a free, open-source software that provides connectivity and activity-based mapping
and quantification of multidimensional data, using a scale-invariant anatomical mouse brain atlas,
which allows comparison of results across experiments and imaging platforms (40). Concurrently,
an interactive Web-based framework, Openbrainmap (http://openbrainmap.org), was developed
for data visualization and sharing between laboratories (40).

Tissue clarification is only one of many application domains of HTC methods, although it is
arguably the most developed. Beyond tissue transparency, two studies have applied the hydrogel
tissue–embedding step of CLARITY to stabilize mouse embryos or adult mouse brain tissue
for micro–computed tomography (micro-CT) imaging using contrast agents that typically shrink
tissue (2, 139). CLARITY was also used to reveal the 3D structure of patterned microtissues (129).
And in stem cell–derived organoids, passive CLARITY followed by immunostaining was used to
model and explore effects of cocaine exposure on the human fetal brain (70).

A final emerging domain of substantial interest, and an initial motivation for HTC (26), is
the development of hydrogel-tissue hybrids with diverse types of functionalization, which would
enable experiments extending far beyond static structural and molecular analysis. For example,
creation of active constructs based on polymers with electrically conductive properties could
allow new forms of interrogation of biological systems, and diverse additional forms of HTC and
variants are in the process of emerging. Rooted in fundamental chemistry, the broad concept of
envisioning (and remaking) metazoan animals and tissues as metareactants—that is, positionally
intact and chemically versatile scaffolds of molecular reactants—may continue to open up new and
unanticipated domains of investigation and discovery across diverse fields of biology.
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